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We have investigated the effect of potential energy saddles on the evolution of chaos in small 
(three- to seven-atom) inert gas clusters by comparing the local Kolmogorov entropy (K 
entropy) accumulated near a saddle with that accumulated in a potential well. We find that 
saddles which are relatively flat along the isomerization coordinate are most effective at reducing 
the local K entropy in the saddle region, indicating that these saddles tend to regularize the 
dynamics close to the saddle point. In three- and four-atom clusters, we also flnd that flat saddles 
decouple some or all of the cluster’s vibrational modes from one another; this leads to 
approximately quasiperiodic behavior in some degrees of freedom near the saddle regions of 
these clusters. 

I. INTRODUCTION 

In the last three decades, chaotic dynamics in chemi- 
cally relevant Hamiltonian systems has become an increas- 
ingly active field of research. This is in part due to our 
recognition that the vast majority of nonlinear Hamil- 
tonian systems, including those systems of coupled anhar- 
manic oscillators typically used to model molecular vibra- 
tions, exhibit some degree of chaos, Interest in the chaotic 
dynamics of molecules also stems from the fact that cha- 
otic systems are both ergodic and mixing;’ hence nonequi- 
librium ensembles of chaotic molecules relax to give statis- 
tical equilibrium expectation values of dynamical 
observables.’ 

Many of the earliest investigations of chaos in molec- 
ular systems were concerned simply with determining 
“how chaotic” a particular model Hamiltonian was at a 
given energy. The numerical diagnostics available for an- 
swering such a question are the Liapunov exponents,3 
which measure the asymptotic long-time rate of divergence 
(or convergence) of nearby trajectories in phase space, and 
the Kolmogorov entropy4 (K entropy), which is the sum 
of a system’s positive Liapunov exponents.5 The K entropy 
measures the long-time rate of stretching of small volumes 
of phase space, or, equivalently, the rate at which we lose 
information about the initial state of our system.6 A system 
with at least one positive Liapunov exponent is chaotic, 
and the magnitude of a system’s K entropy tells us “how 
chaotic” the system is. (The situation is complicated 
slightly by the fact that chaotic and regular components of 
phase space can intermingle over a range of energies, and 
so to fully answer the question of how chaotic a dynamical 
system is, we must also measure the fraction of phase space 
occupied by chaotic trajectories.7’8) 

Because the algorithms used to calculate Liapunov ex- 
ponents are computationally intensive, early studies of cha- 
otic Hamiltonian dynamics were often limited to model 
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systems with only a few degrees of freedom; the canonical 
system introduced by Hinon and Heiles,’ for example, has 
only two degrees of freedom. In the last decade, however, 
it has become feasible to compute the entire spectrum of 
Liapunov exponents for realistic molecular systems with as 
many as a few dozen degrees of freedom, and for very long 
times. These investigations have shown that the Liapunov 
spectrum and K entropy of a system may contain a variety 
of interesting information in addition to answering the 
question of whether a system is chaotic. For example, Livi, 
Vulpiani, and co-workersSt2 have recently attempted to 
uncover the significance of the shape of the Liapunov spec- 
trum and its limiting form as the number of degrees of 
freedom becomes very large. Posch and co-workers’3-‘5 
have calculated the Liapunov exponents of dense fluid sys- 
tems with periodic boundary conditions; they observe in- 
teresting changes in the shape of the Liapunov spectrum 
with density and with the number of spatial dimensions. 
(They have also computed the rotation numbers15?16 asso- 
ciated with the Liapunov exponents; it is not yet clear what 
dynamical significance these numbers have.) Cleary” has 
interpreted steplike fluctuations in the Liapunov exponents 
on a very long time scale ( 106-lo8 time steps) as signifying 
the exploration of dynamically different regions of phase 
space. 

Along similar lines, Amitrano and Berry18 have shown 
that the time evolution of the sample distribution of local 
Liapunov exponents can be a useful tool to distinguish 
dynamically different regions of phase space in realistic 
molecular systems, and can provide insight into the time 
scale on which ergodic behavior among these regions is 
established. The local Liapunov exponents are finite-time 
analogs of the Liapunov exponents, and measure the rate 
of divergence or convergence of nearby phase space trajec- 
tories over short periods of time. The local K entropy, 
which is the sum of the positive local Liapunov exponents, 
measures the short-time stretching of phase space volumes 
along a trajectory. Abarbanel, Brown, and Kennel” have 
also computed the local Liapunov exponents of some 
model systems, all of which are non-Hamiltonian. They 
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observe different types of power-law convergence of the 
local Liapunov exponents to the asymptotic (global) Li- 
apunov exponents. (In connection with this point, they 
emphasize that the convergence of local Liapunov expo- 
nents to the asymptotic Liapunov exponents is only incom- 
pletely understood.) Abarbanel, Brown, and Kennel also 
show that the shape of the local Liapunov exponent distri- 
butions can help quantify the degree of short-time or “re- 
gional” predictability in different portions of phase space. 

We report here the results of a study of the local K 
entropy of homogeneous clusters with three to seven atoms 
bound by pairwise Lennard-Jones or Morse pair potentials; 
in particular, we are interested in comparing the local K 
entropy for trajectory segments near potential minima with 
that for trajectory segments near saddles on the potential 
surface. Our interest in the behavior of clusters in the vi- 
cinity of potential energy saddles stems from two consid- 
erations. First, saddles are ubiquitous features of the po- 
tential surfaces of loosely bound systems such as clusters 
and van der Waals complexes; a thorough analysis of the 
behavior of these systems in the saddle regions is important 
to our understanding of dynamical phenomena such as un- 
imolecular isomerization2’ and the transition from solid- 
like to liquidlike behavior in clusters.2”22 Second, recent 
work of outs23 has shown that in Ar3, the curvatures of the 
potential surface near the saddle (associated with a collin- 
ear configuration of the three atoms) play a crucial role in 
determining how the cluster’s K entropy varies with its 
total energy. This previous work showed that in Ar3, the 
saddle region sometimes acted to collimate the flow of 
neighboring trajectories, thereby reducing the degree of 
chaos in the cluster. However, we found no evidence of 
similar behavior in Ar,. Our aim in the present study is to 
probe more deeply into the mechanisms by which saddle 
regions may control the evolution of chaos in small clus- 
ters, and in particular to determine to what degree the 
properties of the saddle region in the Ar3 cluster are ge- 
neric and representative of larger clusters. 

Recent work by Pettini24 provides another motivation 
for studying the evolution of chaos in small systems in 
terms of the shape of the potential energy surface. In this 
work, Pettini used tools of Riemannian differential geom- 
etry to search for a relationship between the curvature of 
configuration space manifolds and the strong-stochasticity 
threshold in Fermi-Pasta-Ulam and c$~ chains. He found 
that in these systems, the onset of chaotic behavior was 
closely linked to a major change in the topology of the 
underlying configuration space manifold which could be 
measured by the manifold’s scalar or Ricci curvature; fur- 
thermore, he suggested that an analysis of chaotic dynam- 
ics based on topological considerations may ultimately 
prove more useful than the usual homoclinic intersection 
picture, especially in systems with many degrees of free- 
dom. 

The paper is organized as follows. In Sec. II we de- 
scribe the method by which we isolate segments of phase 
space trajectories near potential minima or potential sad- 
dles; this will permit us to introduce a specialized, but 
natural, notation for presenting our results. In this section, 
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FIG. 1. Schematic representation of a molecular dynamics trajectory on 
a multidimensional potential energy surface. The horizontal line with dots 
represents the constant energy trajectory; each dot signifies a steepest- 
descent quench. Some quenches have been represented by arrows; for the 
sake of clarity, only a few quenches are shown explicitly. The numeric 
labels on the MD trajectory are described in the text. 

we also describe the way in which we calculate the local K 
entropy for trajectory segments and make some general 
remarks on the local Liapunov exponents and local K en- 
tropy. In Sec. III we present our results, organized both by 
cluster size and by the form of the pairwise binding poten- 
tial. We then discuss these results in terms of the underly- 
ing features of the potential energy surfaces of these clus- 
ters. Section IV discusses a method by which results 
obtained for different clusters can be placed on an “equal 
footing” for comparision. Finally, in Sec. V we summarize 
the main conclusions of the paper and indicate the chem- 
ical relevance of our findings. 

II. COMPUTATIONAL METHOD 

We begin our calculations by generating phase space 
trajectories for a cluster using conventional isoergic molec- 
ular dynamics (MD) techniques. We use the velocity Ver- 
let method25726 for propagating our trajectories forward in 
time; unless otherwise specified, we use an integration time 
step of At= lo-l4 s. 

To isolate segments of a trajectory near potential en- 
ergy saddles, we perform steepest descent quenches on the 
cluster at periodic intervals of L time steps (Fig. 1). We 
typically set L=500, although for six- and seven-atom 
clusters we quench more frequently. When the end points 
of the steepest-descent quenches abruptly switch from one 
minimum to another (different atomic permutations of the 
same geometric configuration are considered to be distinct 
minima), we know that the MD trajectory has crossed a 
saddle which separates these two minima. 

Once we have isolated an isomerization, we assign in- 
teger labels to the L-step segments of the MD trajectory 
near the saddle point, as shown in Fig. 1. The segment in 
which the isomerization occurs is labeled “0”; segments at 
progressively earlier and later times are labeled with neg- 
ative and positive integers, respectively. By piecing to- 
gether several consecutive L-step segments, we can gener- 
ate portions of our MD trajectory of any desired length, 
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provided the total length is a multiple of L time steps, and 
whose (temporal) proximity to the saddle point is known 
to within the quench interval of L steps. These pieced- 
together segments are the fundamental dynamical entities 
whose properties we shall consider in this paper. 

We restrict our attention to sections of the MD trajec- 
tory assembled from an odd number of consecutive L-step 
segments so that we may define a unique central L-step 
segment for each portion. The label of this central segment, 
along with the length of the entire assembled section, to- 
gether locate any section of the MD trajectory with respect 
to a nearby saddle point. We now introduce a special no- 
tation which uses these two identifying features. 

culate for MD trajectory segments. We distinguish be- 
tween quantities which are defined only over an extended 
trajectory segment, such as the local Liapunov exponents 
and local K entropy, and quantities defined for an instan- 
taneous configuration of our system, and which we can 
therefore average over a segment of the trajectory. We use 
angle brackets to denote this averaging process; for exam- 
ple, the mean kinetic energy of a cluster over the 1500-step 
segment centered on the saddle crossing would be 
v-&in)~x500. 

Suppose we calculate some quantity Q for the set 
{n-k,..., n+ k) of 2k+ 1 L-step segments centered on the 
segment labeled n; we represent the result of this calcula- 
tion as Q?2k+ I) x L, where the subscripts specify the total 
length of the trajectory segment and the superscript indi- 
cates how close this segment is to the saddle point. As a 
specific example, we will later be interested in comparing 
the local K entropy K of the 1500~step segment which 
includes the saddle crossing with the local K entropy of the 
1500-step segments which immediately precede and follow 
this “crossing segment.” If the quench interval L in Fig. 1 
is 500 time steps, then the set { - l,O,l} comprises the 
1500-step segment centered on the saddle crossing, and the 
local K entropy for this segment is just @xsm. For the 
preceding and following 1500~step segments, which are de- 
fined by the sets { -4,-3,-2) and {2,3,4}, the local K 
entropy is given by K$5oo and K:x500, respectively. 

The primary quantities of interest in this work are the 
local Liapunov exponents and local K entropy of our sys- 
tem. The local Liapunov exponents for an L-step portion 
of a phase space trajectory are calculated by diagonalizing 
the product of L Jacobian matrices along the trajectory.3 If 
x(t) = (q1x,41p...,4Nz,~l~~l~...,~~~)T specifies a point on 
the phase space trajectory of an N-atom cluster, and J(x) 
is the phase space Jacobian matrix at x, then the local 
Liapunov exponents and local K entropy are obtained as 
follows. First, we construct the matrix K=IIfZ,rJ(x(t 
+nAt)) and compute its eigenvalues {kj}. The local Li- 
apunov exponents for this L-step trajectory segment are 
given by ilj = (log2 1 kj 1 )/LAt. The local K entropy K is 
just the sum of the positive local Liapunov exponents. We 
use an approximate formula for J which is second order in 
the time step At; the details of this formula are given in 
Ref. 23. Note that different degrees of “locality” can be 
obtained by choosing different values of L.lEp2’ 

We also examine segments of the MD trajectory which 
are temporally removed from any isomerizations, and 
which therefore represent motion in a single potential well. 
We do this by locating sequential portions of the trajectory 
lying in the same potential well or catchment basin. We 
will denote quantities calculated for these trajectory seg- 
ments with a superscript W  (for well); as an example, the 
local K entropy for a set of three consecutive 5OGstep 
segments in a single potential minimum is given by K3wx5500. 
For saddles which connect two nondegenerate minima, we 
use the superscripts UW and LW to distinguish between 
the upper and lower wells. 

We have focused our attention on these short trajec- 
tory segments in order to determine to what extent small 
clusters exhibit different dynamical behavior on different 
regions of the potential surface. Hence it is essential that 
our system for classifying the trajectory segments be un- 
ambiguous. For example, at high energies where the time 
between isomerizations is relatively short, the 1500-step 
segment following a saddle crossing (i.e., the segment de- 
fining K:xsoo) may partially overlap the 1500 steps preced- 
ing the next saddle crossing ( K$500) or the 1500-step seg- 
ment in the potential well between these saddles (KS& 5oo). 
To avoid ambiguities of this nature, we select only those 
portions of our MD trajectories where the residence time 
in two neighboring potential wells is long enough to ensure 
that there is no overlap between different types of trajec- 
tory segments. 

MeyeP8 has proven a number of important theorems 
concerning the Liapunov exponents of Hamiltonian sys- 
tems, many of which are valid for local Liapunov expo- 
nents as well. Of particular importance for the current 
work are the facts that ( 1) the Liapunov exponents come 
in matching positive/negative pairs, in accordance with 
Liouville’s theorem, and (2) there must be at least 2C zero 
Liapunov exponents if there are C independent constants 
of motion. In the present study, our phase space trajecto- 
ries preserve seven independent constants of motion, 
namely three Cartesian components of both linear and an- 
gular momentum, and the total energy. Hence we expect to 
find 14 zero local Liapunov exponents for each trajectory 
segment. In reality, a short trajectory segment often exhib- 
its only 10 or 12 zero local Liapunov exponents; this may 
be related to the convergence properties of the local Li- 
apunov exponents. For an N-atom cluster, the local K en- 
tropy K we report here is the sum of the largest 3N- 7 
local Liapunov exponents for a given trajectory segment; 
this formula excludes those local Liapunov exponents 
which vanish in the asymptotic limit. (The results we 
present here, however, hold as well for the uncorrected 
local K entropy computed from the sum of all positive 
local Liapunov exponents.) The local Liapunov exponents 
we calculated always appear in matching positive/negative 
pairs as expected. 

Now we define the dynamical quantities which we cal- 

We will later be interested in comparing the trends in 
the local K entropy of our clusters with those exhibited by 
the time-averaged kinetic energy of a cluster. All of our 
MD simulations are conducted under conditions of zero 
linear and angular momentum, so that the kinetic energy 
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of a cluster is completely vibrational. Hence we convert the 
kinetic energy of our clusters into an internal vibrational 
temperature, both to introduce more intuitive units and to 
facilitate comparisons between clusters of different sizes. 
The vibrational temperature of an N-atom cluster is given 
by T =2E&( 3N- 6)kB, where kB is Boltzmann’s con- 
stant in appropriate units. 

It is useful to analyze the trends in the local K entropy 
of our clusters on the basis of the degree of coupling among 
a cluster’s vibrational modes. To quantify this coupling, we 
use an adaptation of the mathematical framework devel- 
oped by Miller, Handy, and Adams29 in their studies of 
reaction path Hamiltonians. At each time step along a 
given MD trajectory segment, we diagonalize the Hessian 
matrix of our N-atom cluster, obtaining 3N- 6 unit eigen- 
vectors {Gj} which are just the cluster’s local normal 
modes. (We use standard projection matrix techniques3’ to 
eliminate infinitesimal rotations and translations.) We also 
obtain 3N-6 corresponding eigenvalues {w;}, which are 
the squares of the normal mode vibrational frequencies. 
We order the modes in order of increasing eigenvalues, so 
that o~<w~<**.<&-~ 

Following Miller, Handy, and Adams, we define the 
coupling between two different modes j and k as 
bj, = ilk * d~j/dt. This coupling element essentially mea- 
sures how much mode ~j rotates into mode t& as the clus- 
ter moves along the MD trajectory. In a region of the 
potential surface where some mode t& becomes approxi- 
mately decoupled from the other modes {tij}, tik should 
remain roughly constant. Hence bjk should be small in this 
area of the potential surface. [Note that the indices in bjk 
refer to the vibrational modes of the cluster at a given 
instant, sorted according to the corresponding Hessian ei- 
genvalues. For example, b,,(t) is the instantaneous cou- 
pling at time t between the modes with the two smallest 
Hessian eigenvalues.] 

Page and McIver” give an analytical formula for bjk: 

bjk= 
fir * dH/dt * tij 

CAL+; ’ (1) 

where H is the cluster’s instantaneous Hessian matrix. 
However, analytic evaluation of dH/dt requires lengthy 
computations of the third derivatives of the potential sur- 
face. Instead, we approximate d~j/dt by the expression 
[Gi( t+ At) - tii( t)]/At. Comparison of these two ap- 
proaches for a three-atom cluster showed that this approx- 
imate method is sufficiently accurate for our purposes 
when At= lo-l4 s. Finally, we reduce the matrix {bjk} to 
a manageable amount of data for analysis by focusing on 
the root mean square average of the coupling elements: 

( 
B j=#k$k 

) 

l/2 

== (3N-6)(3N-7) ’ 

which measures in a crude sense the total coupling among 
a cluster’s vibrational modes. 

We would ultimately like to relate the trends in the 
local K entropy of a cluster to some simple properties of 
the cluster’s underlying potential surface. Wales and 

Berry2’ made substantial progress in this direction by con- 
sidering the local K entropy accumulated by a cluster or 
molecule during a single MD time step. In the limit as the 
step size At-O, they obtained a simple formula for the 
one-step local K entropy in terms of the imaginary local 
vibrational frequencies COj) of the system: 

K,= c 1 w; 1 *‘2/ln 2. 
a+0 

(Wales and Berry originally called this quantity K’; here, 
we emphasize its relationship to the cluster’s vibrational 
frequencies by using the symbol K, .) Like the temperature 
or mean vibrational coupling C, this quantity is defined for 
an instantaneous configuration of our cluster. The relation- 
ship between a molecule’s instantaneous imaginary fre- 
quencies and its local K entropy is easy to understand if we 
recognize that negatively curved portions of the potential 
surface induce divergence in bundles of MD trajectories 
traveling perpendicular to the direction of negative curva- 
ture.31 Note that because Wj is a frequency, K, (like the 
local K entropy) has units of bits per unit time. We em- 
phasize that K, can be interpreted either dynamically as an 
approximate instantaneous local K entropy or structurally 
as the magnitude of negative curvature at a point in con- 
figuration space. 

We end this section with a few comments on the lim- 
itations of our method for locating saddle crossings. We 
have adopted the present algorithm for locating saddles 
because for inert gas clusters with five or more atoms, there 
is no simple geometric coordinate, such as a bond or tor- 
sion angle, which suffices to define the reaction coordinate 
connecting two neighboring potential minima. Hence peri- 
odic quenching is a convenient method for locating a clus- 
ter on its potential surface. One drawback of this approach 
is that quenches are computationally expensive. In addi- 
tion, if our quench interval is too large, we may miss in- 
stances in which a saddle is crossed in one direction and 
rapidly recrossed in the other direction, and may incor- 
rectly identify such a segment of the trajectory as one 
which has remained in a single minimum for a long time. 
We can overcome this difficulty by quenching more fre- 
quently; however, this dramatically increases the CPU 
time required for our calculations. 

It is also possible that a trajectory segment which ac- 
tually does remain within a given minimum for a long time 
may stray close to a saddle point without our knowledge, 
because we do not directly monitor the reaction coordinate 
for the isomerization process. For the same reason, in cases 
where two or more nondegenerate saddles connect the 
same two minima, we will not be able to determine which 
saddle was involved in the isomerization. 

Finally, our method for locating saddle crossings is 
effectively applicable over only a limited range of energies. 
This is not a result of our use of quenches; it is simply a 
complication introduced by the dynamics of our clusters. If 
the energy of our MD trajectory is too low, isomerizations 
will be relatively infrequent events and we will need to 
generate very long trajectories to assemble a statistically 
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significant pool of data. On the other hand, if the trajectory 
energy is too high, saddle crossings occur so frequently 
that they begin to overlap, so that we cannot classify our 
trajectory segments unambiguously. This limitation is only 
serious with clusters of seven or more atoms; because of the 
large number of degrees of freedom in these clusters and 
the large number of minima and saddles on their potential 
surfaces, we must generate MD trajectories with fairly high 
energies if we are to observe any isomerizations at all. It 
seems to us that the seven-atom cluster may be close to the 
largest for which the present algorithm is practical. 

O:- Os- 5 10 15 20 0005 0.01 0.015 002 0025 

Temperature Negative C”ival”re 

01 1 0.1' 

0 1 ol -2ck-j 

III. RESULTS AND INTERPRETATION 

In this section, we present our results for three- 
through seven-atom Lennard-Jones clusters and for three- 
and five-atom Morse clusters. We present and discuss our 
results for each cluster in a separate subsection, deferring 
until Sec. V a discussion of the entire body of results. For 
brevity, we will henceforth use the symbols LJN and MN as 
abbreviations for N-atom Lennard-Jones and Morse clus- 
ters, respectively. In all of the clusters we describe here, we 
have chosen the atomic mass to be m  = 39.948 amu and the 
well depth of the interatomic pair potential to be E= 121 K. 
For the Lennard-Jones potential, we set a=3405 A, and 
for the Motse potential, we set the equilibrium bond length 
ro= 3.822 A. These parameters correspond to those gener- 
ally used in simulations of argon clusters. We vary p, the 
dimensionless range parameter for the Morse potential, to 
generate different potential surfaces for Morse clusters of a 
given size.32 Small values of p correspond to long-range 
Morse pair potentials, and a Morse potential with p=6 is 
similar to a Lennard-Jones pair potential. (The actual pair 
potential for Ar, is closely approximated by ~=5.72.~~) 
All of our calculations have been performed on an IBM 
RS/6000 workstation. 

O.lU 1 
10 20 30 40 

oj _ e 1 
5 10 15 20 25 

FIG. 2. Probability distributions for the local K  entropy, (K,), temper- 
ature, and mean vibrational coupling (CT) for various trajectory segments 
for a L.Js cluster at total energy E= - 1.85 E. Each probability distribution 
is normalized to an area of one. The saddle-region distributions are com- 
puted from a sample of 544 saddle crossings, and the well-region distri- 
butions are computed from a sample of 525 trajectory segments in the LJs 
potential well. Units for the abcissas are: local K  entropy and (K,), 
bits/lo-” s; temperature, degrees kelvin; vibrational coupling, 1014 s-‘. 

butions for trajectory segments which precede a saddle 
crossing, for segments which include a saddle crossing, and 
for segments which follow a saddle crossing. All of the 
trajectory segments represented in these distributions are 
taken from MD trajectories with total energy E= - 1.85 E. 

A. LJ3 clusters 

To be more precise, we use the notation introduced in 
Sec. II. Take the four probability distributions for the local 
K entropy shown in the upper left portion of Fig. 2. From 
top to bottom, these distributions correspond to K3wx5500, 
KG&, @ !x5~9 and Kix5~ While the local K entropy is 

Here we discuss our results for a nonrotating three- 
atom Lennard-Jones cluster, which has a particularly sim- 
ple potential energy surface. To help interpret our results, 
we review briefly the stationary points on this surface. The 
global minimum is located at energy E= -3.00 E, where 
the cluster assumes the shape of an equilateral triangle. 
There are three equivalent but permutationally distinct 
saddle points at E= -2.031 E which correspond to a col- 
linear configuration of the atoms. 

In Fig. 2 we show the probability distributions for sev- 
eral dynamical quantities calculated on different portions 
of the LJ3 potential surface. We describe this figure in some 
detail here because several later figures are organized in the 
same way. Four important dynamical quantities are de- 
picted here: ( 1) the local K entropy accumulated during a 
trajectory segment, K; (2) (K,), which is the average over 
a trajectory segment of the K-entropy estimate K, of Wales 
and Berry; (3) the average temperature, (T); and (4) the 
average vibrational coupling, (C). For each of these quan- 
tities, four probability distributions are shown. The top- 
most distribution is that for trajectory segments in the LJ, 
potential well; underneath it are shown (in order) distri- 

defined only for an entire trajectory segment, the other 
three quantities we show in this figure are defined at each 
time step in a segment. Hence the distributions shown for 
the temperature are, from top to bottom, those for 
(T)&,, (T>&oo, (T)!x5~9 and (T)ix5~; the angle 
brackets denote averaging over a trajectory segment, as 
discussed in Sec. II. Note that the well-region and saddle- 
region distributions are actually computed from two sepa- 
rate MD trajectories, and that each distribution has been 
normalized to unit area regardless of the number of points 
in the sample. 

Now that we have described how Fig. 2 is organized, 
we will discuss its meaning. The figure shows that those 
MD trajectory segments which contain a saddle crossing 
(represented by the third histogram in each set in the fig- 
ure) are dynamically very different both from those trajec- 
tory segments which either precede or follow a saddle 
crossing, and from those segments which reside in the LJ3 
potential well. We note that the special character of the 
saddle-region distributions is consistent with the view un- 
derlying transition state theory, namely that we can speak 
of a relatively distinct (although perhaps short-lived) state 
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between reactants and products with its own partition 
function. 

Figure 2 shows that trajectory segments which contain 
a saddle crossing have considerably lower values of the 
local K entropy than do the other portions of the MD 
trajectory, indicating that the cluster becomes less chaotic 
in the saddle region. This observation agrees with our ear- 
lier results.23 We previously suggested that the decrease in 
chaos in the saddle region of LJ, resulted from the geom- 
etry of the potential surface near the saddle point. Specif- 
ically, we suggested that the saddle region acted to “chan- 
nel” neighboring phase space trajectories together, thereby 
preventing divergence of nearby trajectories and reducing 
the K entropy accumulated by the cluster in the saddle 
region. The data shown in Fig. 2, however, indicate that we 
can also view the decrease in the local K entropy in the 
saddle region as a relative increase in the degree to which 
the cluster undergoes regular or quasiperiodic motion in 
that portion of the potential energy surface. The probabil- 
ity distributions for the mean vibrational coupling (C) 
provide evidence for this point of view. We see from Fig. 2 
that the trajectory segments which include a saddle cross- 
ing have substantially lower values of (C) than do the 
other portions of the trajectory. Hence in the saddle region 
the LJ, cluster behaves approximately like a set of three 
uncoupled oscillators, and the cluster’s motion becomes 
fairly regular. This temporary (and incomplete) quasipe- 
riodicity manifests itself in the low values of the local K 
entropy in the saddle region. 

We also see from Fig. 2 that those trajectory segments 
which contain a saddle crossing have a lower average ki- 
netic energy than the other segments. This is just what we 
expect for a constant-energy simulation, as the cluster’s 
potential energy is higher at the saddle point than in the 
potential well. This observation, however, may lead a skep- 
tical reader to suggest that LJ, exhibits less chaos in the 
saddle region simply because the cluster has less kinetic 
energy there. While we believe these trends are related, as 
we will discuss later, we think that the decrease in chaos 
near the saddle point is not simply a kinetic energy effect, 
and in fact is intimately related to the decoupling of the 
cluster’s vibrational modes as measured by (C). 

To see this, we examine the individual coupling ele- 
ments {bjk) which are averaged to give us the mean vibra- 
tional coupling (C). (This is feasible for LJ, because there 
are only three coupling elements to examine. For a four- 
atom cluster, however, there are already 15 individual cou- 
pling elements {bjk}.) Figure 3 shows how these coupling 
elements evolve in time during a representative pass over 
the saddle point. Here, we plot the magnitudes of the cou- 
pling elements 1 b12 I, 1 b13 I, and 1 b,, I as functions of time. 
We also plot the cluster’s kinetic energy and maximum 
internal angle as functions of time, in order to track its 
progress across the saddle point. The figure is divided hor- 
izontally into three sections of 1500 time steps each; the 
saddle crossing occurs in the center section, at the point 
where the cluster’s bending angle 19= 180”. 

We see that the coupling elements b12 and b23 behave 
very differently depending on whether the LJ, cluster is in 

II I 

0.5 - 
g o.I”.Ll~..lI 

biz 
I 

bt3 3 

1.25, I 

Time Step 

FIG. 3. The magnitudes of the coupling elements 1 b12 I, 1 br3 I, and 1 bz, 1 
as functions of time for a single isomerization of LJ, . The x axis measures 
progress along the trajectory in units of the time step At= lo-l4 s. Also 
plotted as functions of time are the cluster’s largest internal angle in 
degrees, 0, and the instantaneous kinetic energy of the cluster in E. The 
total energy of the cluster is E= - 1.85 E in this trajectory segment. 

the saddle region or not. In the left and right sections of 
Fig. 3 (corresponding to the trajectory segments preceding 
and following the saddle crossing), the coupling elements 
b,, and bz3 vary rapidly with time, exhibiting several sharp 
peaks. In the center section of the figure, however, there is 
a portion of the trajectory where b12 and b23 decrease 
sharply in magnitude, and where b,, undergoes more gen- 
tle, almost periodic oscillations. From the plot of the bend- 
ing angle 6, we find that this portion of the trajectory 
corresponds exactly to the cluster’s passage across the sad- 
dle point. 

Equation ( 1) shows that if the frequencies of two vi- 
brational modes tij and t& become nearly degenerate, the 
corresponding coupling element bj, becomes quite large. 
This is why b,, and b23 exhibit sharp spikes at some points. 
Because at each time step we sort our vibrational modes in 
order of increasing frequency, the opportunities for such 
peaks are limited to those coupling elements which couple 
“adjacent” pairs of modes ~j and fij+ ,. We can see a sharp 
peak in b13 only when all three modes of LJ, become nearly 
degenerate, which happens rarely in our trajectories. In 
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fact, modes Qt and t13 are so widely separated in frequency 
that the coupling element b13 remains very small most of 
the time, as Fig. 3 shows. 

The behavior of the coupling elements {bjk} indicates 
that the vibrational modes of LJ, become substantially de- 
coupled near the bending saddle point. Of particular inter- 
est is the fact that mode 8, appears to become almost com- 
pletely decoupled from the other two modes. Recall that at 
each instant, mode Gt is defined as the vibrational mode 
with the lowest squared frequency w:; near the saddle 
point, this mode corresponds to the direction along which 
the potential surface has negative curvature.34 This direc- 
tion is of course the reaction coordinate for isomerization. 
Hence Fig. 3 shows that in the saddle region of LJ3, mo- 
tion along the isomerization coordinate is almost com- 
pletely decoupled from the cluster’s other degrees of free- 
dom. (Although we have depicted only a single saddle 
crossing in Fig. 3, the behavior presented there is represen- 
tative of LJ3 isomerizations in general.) 

curves which retrace the same points during each oscilla- 
tion; the associated action I = $p dq is a constant of the 
motion. The extent to which our approximate mode ac- 
tions lj mimic this behavior is an indication of how sepa- 
rable the cluster’s modes are. 

Figure 3 also shows that the increase in regular behav- 
ior in the saddle region of LJ3 is not solely a result of the 
low kinetic energy there. This is shown by the markedly 
different time dependence of the coupling elements b12 and 
b23 in the saddle region. If the magnitudes of the coupling 
elements {bjk} were determined simply by the cluster’s 
kinetic energy, we would expect that both b12 and bz3 
would exhibit small but finite peaks in the center portion of 
Fig. 3, because the cluster’s kinetic energy decreases there 
but remains positive. The fact that only b23 exhibits these 
peaks, while b12 drops to nearly zero, indicates that the 
decoupling of mode Q, and the consequent increase in reg- 
ular or quasiperiodic motion in the saddle region is an 
inherent feature of the shape of the potential surface near 
the saddle, and is not simply due to the decrease in kinetic 
energy in the saddle region. 

To probe more deeply into the question of mode sep- 
arability near the LJ, bending saddle, we turn to an action- 
angle approach. Let the vectors q(t) = (qlx,qlP...,qNz) T 
and p(t) = ~,P~~...,PNJ~ represent the instantaneous 
atomic positions and momenta of the cluster. We define an 
approximate action for mode ~j as follows: 

Ij(nAt) = i pj(kAt)Aqj(kAt), 
k=l 

where Pj and Aqj are the components of the atomic mo- 
menta and displacements projected onto mode ~j : 

Pj(t)=fiT(t) 'P(t), 

Aqj(f)=~T(t). [q(t)-q(t-Aht)]. 

Figure 4 shows I3 as a function of time for the LJ, 
saddle crossing depicted earlier in Fig. 3. If we view the 
center portion of the trajectory on a magnified scale [Fig. 
4(b)], we can see clear steplike behavior in I,. Each short 
plateau in this section corresponds to a classical turning 
point for the mode ti3, where the trajectory passes through 
the p3=0 plane; hence two consecutive plateaus corre- 
spond to a complete oscillation along G3. To make this 
concept more precise, we define a “complete oscillation” 
along the mode tij as a portion of the MD trajectory ter- 
minated at both ends by points where Pi changes from 
positive to negative. This definition permits us to apply the 
term “oscillation” to other portions of the trajectory where 
steplike behavior in 1, may be less obvious. In Fig. 4(b), 
we have indicated with arrows the end points of several 
complete oscillations along ti3. The increase in I, during a 
single complete oscillation, AI,, is the quantity which cor- 
responds to the true action I= $ip dq, and which should be 
constant for a completely decoupled oscillator. 

Table I shows that AI3 is in fact fairly well conserved 
during the saddle crossing. During the six complete oscil- 
lations along mode G3 which occur between steps 2029 and 
2712 [those marked in Fig. 4(b)], h13 remains between 
0.2575h and 0.2775h; this is a very narrow range when 
compared with the fluctuations in hl, for the oscillations 
preceding and following this portion of the MD trajectory. 
Table II shows that AI2 is not conserved quite as well 
during the isomerization: we see that between steps 2001 
and 2740, which correspond to 13 oscillations along Q,, 
AI, fluctuates within the somewhat larger interval 0.0034h 
< AI2 < 0.042h. This interval is still rather narrow, how- 

ever, when compared with the fluctuations in AI2 preced- 
ing and following the saddle crossing. We have examined 
several other isomerizations of LJ, which are not shown 
here; during each isomerization, AI2 and AI3 are fairly well 
conserved in the saddle region. We find that these actions 
are generally conserved best when they fluctuate around an 
average value greater than about O.lh. 

Tables I and II also indicate that the periods of the 
oscillations along modes Ei2 and ti3 remain roughly constant 
as the cluster traverses the bending saddle. This observa- 
tion leads us back to the plots of 1 bjk I shown in Fig. 3. We 
see that the sharp spikes in I b12 I and I b23 I found in the left 
and right portions of this figure occur at apparently ran- 
dom intervals, while the more gentle oscillations in I b23 ( at 
the center of Fig. 3 are much more periodic, reflecting the 
nearly quasiperiodic behavior of the cluster in the saddle 
region. 

We set lj( t=O> =0 for each mode. For an isolated bound 
oscillator, the parametric curves (p(t) ,q( t)) are closed 

The only exception to this pattern is near the right 
edge of Fig. 3; between steps 4000 and 4350 we see six 
nearly periodic spikes in I b23 1. (The actual locations of the 
spikes are steps 4011, 4076, 4139, 4207, 4267, and 4339, 
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TABLE I. The periods and increases in action for those complete oscil- 
lations along mode 8, which take place during the middle third (steps 
1500-3000) of the trajectory shown in Figs. 3 and 4. AI3 is given in 
multiples of Planck’s constant h. 

Initial and final Period 
time steps (time steps) 

1434-1526 92 
1526-1622 96 
1622-1713 91 
1713-1853 140 
1853-1933 80 
1933-2029 96 
2029-2153 124 
2153-2262 109 
2262-2371 109 
2371-2486 105 
24862591 105 
2591-2712 121 
2712-2809 97 
2809-2854 45 
2854-2906 52 
2906-2986 80 
29863056 70 

M3 

2.240 
0.532 5 
0.601 1 
1.028 
1.349 
0.119 0 
0.257 5 
0.263 1 
0.271 8 
0.277 5 
0.261 1 
0.259 5 
0.136 5 
0.045 47 
1.055 
0.334 8 
0.719 1 

quasiperiodic dynamics. The critical bending angle beyond 
which mode G, becomes largely decoupled seems to be 
approximately 8 = 90”. 

From the evidence presented in Figs. 3  and 4, we con- 
clude that the vibrational Hamiltonian of LJ, becomes 
largely separable when the cluster is near the bending sad- 
dle. This separability manifests itself not only in the cou- 
pling constants {bj/J and the mode actions Ii, but also in 
the local K entropy of the cluster, which decreases substan- 

TABLE II. The periods and increases in action for those complete oscil- 
lations along mode 8, which take place during the middle third (steps 
15CO-3C00) of the trajectory shown in Figs. 3 and 4. AZ* is given in 
multiples of Plan&s constant h. 

2000 2500 3000 

Tune Step 

Initial and final Period 
time steps (time steps) Al2 

FIG. 4. (a) Time dependence of the approximate mode action ZX(t) for 
the LJ, saddle crossing depicted in Fig. 3. The x axis measures time in 
units of the t ime step At= 10-l’ s. Z, is measured in multiples of Planck’s 
constant h. (b) Expanded view of the center portion of IS(t). Arrows 
mark the end points of six complete oscillations along mode iiS. 

giving an average spacing of 66*6 time steps.) From the 
plot of 8  we see that in this part of the trajectory, the 
cluster enters the saddle region but is reflected out before it 
crosses the saddle. Nevertheless, the cluster has penetrated 
deeply enough into the saddle region to effectively decou- 
ple mode 6, , as I b12  1 becomes quite small during this in- 
terval. This portion of the trajectory also shows steplike 
behavior in the actions I2 and I,, which is characteristic of 

1451-1628 177 1.214 
1628-1824 196 1.004 
1824-1918 94 0.738 2 
1918-2001 83 0.117 6 
2001-2056 55 0.016 44 
2056-2126 70 0.041 98 
2126-2177 51 0.009 604 
2177-2227 50 0.013 47 
2227-2298 71 0.020 5 1 
2298-2348 50 0.010 68 
2348-2392 44 0.003 784 
2392-2456 64 0.017 18 
2456-2518 62 0.018 85 
2518-2563 45 0.003 460 
2563-2622 59 0.019 29 
2622-2687 65 0.032 6 1 
2687-2740 53 0.009 617 
2740-2837 97 0.1165 
2837-3043 106 1.9500 
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tially in the saddle region. We next ask if there are any 
simple geometric or topological features of the potential 
energy saddle which are responsible for this near- 
separability. This leads us back to Fig. 2, and specifically to 
the probability distributions for (K,). 

Figure 2 clearly shows that the saddle segments of the 
MD trajectory of LJ, exhibit (JY,) values which are sub- 
stantially different from those in the other types of trajec- 
tory segments. Recall that K, varies in tandem with the 
instantaneous negative curvature of the potential surface. 
Although each of the four types of MD trajectory segments 
typically experiences some negative curvature, the areas of 
the potential surface explored by saddle segments have less 
negative curvature than those areas explored by other tra- 
jectory segments. This is consistent with our earlier obser- 
vations on LJ3 and M, clusters.23 Originally, Wales and 
Berry27 intended that (K,) would serve as a computation- 
ally inexpensive estimate of the true K entropy; we see 
from Fig. 2 that although the absolute magnitudes of K 
and (K,) are not particularly close, these two measures 
follow similar trends. (The predictive value of K, (K,), 
and other related estimates of the true global K entropy is 
discussed in more detail elsewhere.‘8P’9V23’27’35) 

should become largely decoupled from the other modes. In 
the case of the sharply pinched saddle, however, the inter- 
action between the saddle-crossing mode and any other 
mode which may couple to it is enhanced because the 
shape of the potential surface changes rapidly along the 
reaction coordinate. Hence we expect that, in general, the 
vibrational decoupling in a saddle region (and therefore 
the degree of quasiperiodicity there) should vary with the 
flatness of the saddle. 

This qualitative argument is admittedly rather crude; 
for example, it ignores both the effects of reaction path 
curvature and the possibility that the sides of a saddle may 
ripple in and out as the reaction path is traversed. How- 
ever, it seems that in our clusters, these effects are usually 
less important than the flatness of a given saddle. When we 
discuss five-atom Morse clusters, for example, we will find 
that there is no significant rippling of the saddle walls, and 
that the negative curvatures in the saddle region are the 
primary determinant of the clusters’ dynamics there. 

At first it may seem puzzling that the LJ3 cluster en- 
counters more negative curvature in the potential well than 
near the saddle point, or even that there is substantial neg- 
ative curvature in the potential minimum at all. While 
there is by definition at least one imaginary vibrational 
frequency c&d at a saddle, in LJ, the magnitude of that 
frequency, which is associated with the bending mode of 
the linear configuration, is quite small: 0,=7.32i cm-‘. 
At the high energy considered here (E= - 1.85 E), a LJ, 
trajectory segment which remains within the potential well 
probably spends a large fraction of time high on the sides 
of the well, where there is substantial negative curvature in 
the cluster’s stretching modes. This stretching negative 
curvature is often larger in magnitude than the very gentle 
negative curvature associated with the bending mode near 
the saddle point. Hence the cluster on average experiences 
more negative curvature in the well than in the saddle 
region, which is comparatively flat along directions of neg- 
ative curvature. 

This argument also helps explain the correlation be- 
tween the decrease in local K entropy near the saddle and 
the decrease in kinetic energy there. Because flatter saddles 
are naturally longer in the direction of the isomerization 
coordinate, we expect that trajectory segments in flat sad- 
dle regions will be substantially colder than “well” seg- 
ments with the same total energy. Conversely, trajectory 
segments which pass over a sharply pinched (hence 
shorter) saddle will sample a high-potential-energy region 
of the surface for only a short time, and may be only 
slightly colder than corresponding “well segments.” 

In addition, we find that in LJ3, the flat saddle is effi- 
cient at decoupling a cluster’s vibrational modes and in- 
ducing approximately quasiperiodic behavior; this will 
prove to be true for three-atom Morse clusters as well, and 
to a limited extent for LJ4. This seems plausible if we 
consider the two extreme cases of a very flat saddle with 
almost no negative curvature along the isomerization co- 
ordinate, and a very sharp saddle that is markedly pinched. 
As a physical model for these saddles, we might imagine an 
hourglass whose neck can be stretched or compressed by 
pulling or pushing on the two globes at either end. An 
hourglass with a long neck obviously corresponds to a flat 
saddle, while a short-necked hourglass contains a saddle 
which is sharply negatively curved. 

We conclude our discussion of Fig. 2, and of the LJ, 
cluster, by mentioning that for each of the four quantities 
shown in this figure, the probability distributions for seg- 
ments preceding and following the saddle crossing are 
quite similar both to each other, and to the probability 
distribution for segments residing in the potential well. 
This similarity is not merely qualitative: Table III shows 
that for each of the four quantities studied, the means of 
these three distributions are very close. In fact, according 
to the Kolmogorov-Smimov test36 and to Student’s t test 
for paired samples,36 these three distributions are statisti- 
cally indistinguishable for each of the four quantities 
shown. (We test for statistical significance at the 1% level 
throughout this article.) We can draw two important con- 
clusions from this observation. 

In the case of the flat saddle, the shape of the potential 
surface changes very slowly along the reaction coordinate; 
hence the vibrational mode corresponding to isomerization 

First, the cluster’s dynamics are essentially the same 
for segments preceding and following an isomerization. 
This is just what we expect for a symmetric saddle because 
the cluster’s equations of motion are microscopically re- 
versible in time. We can therefore conclude that there is no 
“memory” of the cluster having passed over a saddle, 
which confirms the validity of a local interpretation27 of 
the chaotic dynamics in LJ3. Second, we see that at this 
energy ( - 1.85 E), the saddle crossing takes place quickly 
enough so that there is little difference between 1500-step 
trajectory segments in the potential well and segments ei- 
ther preceding or following an isomerization. We originally 
distinguished between “well” segments and segments im- 
mediately preceding or following an isomerization because 
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TABLE III. Comparison of the means of the probability distributions for 
K, (K,), (T), and (C) for LJI as shown in Fig. 2 and for p=6 and p=3 
MJ as shown in Figs. 5 and 6. Units are the same as those for the abcissas 
in the figures. 

Quantity 

~LX 
Ghl 
Ko 3k5co 
P’ 3x%33 

Ww%a~ 
W&&I 
W&m 
KA+;m 

(Tjw 3x933 
G%;, 
G%,sco 
(T)+3 3xMo 

(OW 3yx 

(c)pi 
3xX0 

g+3 
JXMO 

Mean for LJ3 

14.54 
14.67 
8.75 

14.60 

18.48 
18.12 
9.43 

18.39 

30.54 
30.54 
19.93 
30.7 1 

0.0207 
0.0205 
0.0138 
0.0206 

Mean for MX Mean for Ml 
p=6 p=3 

14.50 8.48 
14.72 8.48 
8.49 7.27 

14.55 8.49 

17.77 10.23 
17.68 10.16 
9.18 7.67 

17.59 10.31 

32.70 34.37 
32.97 33.73 
19.72 29.36 
32.98 34.28 

0.0201 0.0117 
0.0200 0.0115 
0.0131 0.0095 
0.0201 0.0118 

we thought that the latter segments might show dynamical 
behavior intermediate between that of the saddle and well 
regions. This is not the case for LJ3, and Fig. 3 shows why: 
for the isomerization shown there, the entire saddle cross- 
ing takes only 900 time steps, so that the isomerization 
event easily fits within a 1500-step “saddle segment.” Fur- 
thermore, the cluster’s dynamics on either side of the sad- 
dle are dominated by rapid vibrations within a single well. 

In principle, we could determine more precisely how 
sharp the transition from well-like to saddlelike dynamics 
is by reducing our quench interval and repeating the cal- 
culations summarized in Fig. 2. However, we can obtain 
essentially the same information from the time dependence 
of 1 b23 ( shown in Fig. 3. This plot shows that at the energy 
E= - 1.85 E, the transition takes place in less than 100 
time steps. Hence to obtain any quantitative information 
about the transition from well-like to saddlelike dynamics, 
we must reduce our quench interval to less than 100 steps, 
which is computationally impractical. In addition, if we 
divide our trajectory into such short segments and retain 
the current algorithm, the intrinsic variation in the dura- 
tion of the isomerization process might obscure any behav- 
ior specific to the well-to-saddle transition region. 

B. Allo clusters 

Next, we discuss a similar body of results for two dif- 
ferent three-atom Morse clusters. The two clusters we dis- 
cuss here differ only in their values of the range parameter 
p: one cluster has p = 6, which corresponds to a Morse pair 
potential whose range is comparable to a Lennard-Jones 
potential, while the other cluster has p=3, which corre- 
sponds to a Morse potential substantially longer in range. 
We have chosen these values of p to facilitate comparison 
with our previous work on three-atom clusters. We empha- 
size that for both of these clusters, the potential energy 

0-j sr2, J 0.j -A J 
5 10 15 20 0.005 0 01 0015 0.02 0.025 

TW$JWt3,“~.2 Negall”* curvature 

- 7-c__, 1 

~~f~~ 

10 20 40 10 15 20 

FIG. 5. Probability distributions similar to those given in Fig. 2, except 
for a MS cluster with p=6 and at total energy E= - 1.85 E. The saddle- 
region distributions are computed from a sample of 522 saddle crossings, 
and the well-region distributions are computed from a sample of 708 
trajectory segments in the M, potential well. Units for the abcissas are as 
in Fig. 2. 

surface has the same general structure as that of LJ3. The 
energy of the equilateral triangle minimum is E= -3.00 E 
for both M, clusters; the saddle point has energy 
E= -2.005 E for the p=6 cluster and energy E= -2.102 
E for the p=3 cluster. 

First, we present our results for the shorter range po- 
tential. Figure 5 shows several probability distributions like 
those in Fig. 2, but calculated for a M3 cluster with p=6 
instead of for a Lennard-Jones cluster. The results for this 
cluster are qualitatively very similar to those shown earlier 
for LJ3: those segments of the cluster’s MD trajectory in 
the saddle region are substantially colder and less chaotic 
than trajectory segments on other parts of the potential 
surface. Saddle-region segments also encounter less vibra- 
tional mode coupling and less negative curvature, as mea- 
sured by (C) and (K,), respectively. It is not surprising 
that the dynamics of this cluster are similar to those of LJ,, 
because the Lennard-Jones pair potential and the p=6 
Morse potential are quite similar. 

However, the M3 cluster bound by long-range Morse 
pair potentials (with p= 3) behaves quite differently. In 
Fig. 6, we show probability distributions for the same four 
dynamical quantities-K, (K,), (T), and (C)-for a 
three-atom Morse cluster with p = 3. We notice that in this 
cluster, the differences between the saddle-region distribu- 
tions and those distributions computed from segments ex- 
ploring other portions of the potential surface are much 
less pronounced. Table III compares the means of the dis- 
tributions for the LJ3 cluster and the p= 3 and p=6 M3 
clusters; we see that although the saddle region in the p= 3 
cluster still acts to decouple the cluster’s vibrational 
modes, and therefore reduces the local K entropy accumu- 
lated near the saddle, this effect is not as strong as in either 
the p = 6 Morse cluster or the Lennard-Jones cluster. 

This qualitative difference between three-particle clus- 
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PIG. 6. Probability distributions similar to those given in Fig. 5, except 
for a M:, cluster with p= 3 and at total energy E= - 1.85 E. The saddle- 
region distributions are computed from a sample of 531 saddle crossings, 
and the well-region distributions are computed from a sample of 562 
trajectory segments in the Ms  potential well. Units for the abcissas are as 
in Fig. 2. 

FIG. 7. Probability distributions similar to those given in Fig. 2, except 
for a LJd cluster at total energy E= -4.5 E. The saddle-region distribu- 
tions are computed from a sample of 683 saddle crossings, and the well- 
region distributions are computed from a sample of 547 trajectory seg- 
ments in the potential well. Units for the abcissas are as in Fig. 2. 

ters bound by short-range potentials and those bound by 
long-range potentials agrees well with our earlier work,23 
and is just what we might predict from the argument we 
outlined above relating the flatness of the LJ3 saddle to its 
ability to decouple a cluster’s vibrational modes. In the 
p=6 M, cluster, as in the Lennard-Jones cluster, MD tra- 
jectory segments which pass over the saddle tend to ex- 
plore regions of the potential surface which are consider- 
ably flatter than those portions of the trajectory in the 
potential well; as we explained earlier, this leads to good 
separation of the vibrational modes in the saddle region. In 
the p = 3 Morse cluster, however, the negative curvature 
sampled by trajectory segments in the saddle region (as 
measured by (K,)) is only slightly less than that sampled 
by well-region segments, so the decoupling is less effective 
in the saddle region of this cluster. 

We can locate the origin of this behavior in the shape 

in the local K entropy we observe for three-atom clusters 
primarily reflect the degree of vibrational coupling and 
negative curvature near the saddle, and not the kinetic 
energy of the clusters. For example, we find that in all 
regions of the potential surface, the p = 3 M3 cluster is both 
substantially hotter and considerably less chaotic than the 
LJ, cluster; this is because the vibrational modes of the 
Morse cluster are coupled more weakly, as measured by 
(C), despite the higher kinetic energy in that cluster. Sim- 
ilarly, for MD trajectory segments in the potential well, the 
p=6 M3 cluster is somewhat hotter than LJ3; however, 
these two clusters have roughly equal values of (C) and 
(K,) in the well, and hence comparable degrees of chaos 
there. 

C. LJ, clusters 

of the potential surfaces of these clusters at their respective 
saddle points. Recall that we found that the saddle region 
in LJ3 is very flat in the negatively curved direction, with 
0 ,=7.321’ cm-‘. The saddle of the M3 cluster with p=6 
is even flatter, with w,,=4.14i cm-‘; the saddle of the 
p=3 M3 cluster, on the other hand, is more pinched, with 
w sad= 13.481’ Cm-‘. Hence we can begin to formulate a 
general principle which permits us to understand a clus- 
ter’s dynamics in terms of the shape of its potential energy 
saddles, and which encompasses both Lennard-Jones and 
Morse clusters. That principle is that flat saddles which 
prevail in clusters bound by short-range potentials tend to 
be less effective at “defocusing” MD trajectories, and also 
act to induce vibrational decoupling in small clusters. 
These two effects increase the relative degree of quasiperi- 
odic behavior near the saddle point and reduce the local K 
entropy there. 

Next, we present our results for the four-atom 
Lermard-Jones cluster; we will find that this cluster as well 
fits into the general principle outlined above. The LJ, clus- 
ter, like LJ,, has a fairly simple potential energy surface 
with only one kind of minimum and one kind of first-rank 
saddle point. The minimum corresponds to a tetrahedral 
configuration of the atoms, and has energy E= -6.00 E; 
the saddle point corresponds to a planar rhombus-shaped 
cluster, and has energy E= -5.073 E. (The square planar 
cluster, with E= -4.481 E, is also a stationary point of the 
potential surface, but it is a second-rank saddle, with two 
imaginary vibrational frequencies of 23.13i cm-’ and 
43.561’ cm-‘.) 

Table III also provides further evidence that the trends 

In Fig. 7 we show the by-now familiar probability dis- 
tributions, computed at E= -4.5 E, for the local K en- 
tropy, (K,) , temperature, and vibrational coupling for tra- 
jectory segments in different regions of the LJ.+ potential 
surface. We see that LJ4 behaves similarly to LJ,: the 
saddle-region segments stand out as substantially colder 
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FIG. 8. T ime dependence of the approximate mode action I*(t) for a 
single LI, saddle crossing. The x axis measures time in units of the time 
step At= IO-” s; the actual isomerization takes place between steps 1750 
and 2300. I, is measured in multiples of Planck’s constant h. Arrows 
mark the end points of four complete oscillations along mode 8, during 
the isomerixation. 

and less chaotic than trajectory segments in any other re- 
gion of the surface; they also sample areas of the potential 
surface which are less negatively curved and which couple 
the cluster’s modes together less strongly. As in LJ3, this 
dynamical behavior reflects in part the fact that the saddle 
region in LJ., is fairly flat along the isomerization coordi- 
nate, with a,d=10.5% cm-‘. We  should also point out 
that, as in LJ3, the dynamics of LJ4 are essentially the same 
for trajectory segments preceding and following an isomer- 
ization (as expected from considerations of microscopic 
reversibility), and that these segments are statistically in- 
distinguishable from those segments which remain in the 
potential minimum. 

We  have performed an action-angle analysis of the vi- 
brational modes of LJ4 like that described above for LJ,. 
We  find that in the four-atom cluster, the individual mode 
actions in the saddle region are not conserved as well as in 
LJ3. Only the action corresponding to mode t& generally 
shows clear steplike behavior during the isomerization pro- 
cess; this is indicated for a representative saddle crossing in 
Fig. 8. For the four complete oscillations along mode ti2 
marked with arrows in this figure, AI, varies between 
0.178h and 0.228h. This range is somewhat larger than the 
corresponding ranges for Ai2 and AI3 in the saddle region 
of LJ, (Tables I and II). Because the saddle in LJ4 is not 
quite as flat as that in LJ,, and therefore gives rise to larger 
values of (C) and the local K entropy in the saddle region 
of LJ4, we naturally expect that the saddle-region mode 
actions will be less well conserved in LJ4. Nevertheless, we 
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TABLE IV. Energies (in E) and imaginary vibrational frequencies (in 
cm-‘) for LJ, and M, clusters at their respective stationary points. 

Min imum 

us p=5 MS p=9 MS 

E= 

DSD saddle 

-9.104 -9.085 -9.007 

E= 
Ci&&= 

EB saddle 

-8.481 - 8.497 - 8.096 
35.521’ 39.441 30.31i 

E= -8.198 -8.161 -8.011 
%ad= 18.84i 20.991’ 8.64i 

were surprised to find that only mode t& maintained a 
roughly constant action in the saddle region. 

We  can think of two possible explanations for this ob- 
servation. It may be that as we increase the size of our 
cluster, the newly added vibrational modes “pile up” in a 
relatively narrow range of high vibrational frequencies; 
these modes would then couple more effectively with each 
other because of their near-degeneracy, and any approxi- 
mately quasiperiodic motion of the cluster would be con- 
fined to the lowest frequency modes. In addition, as we 
increase the number of modes in a cluster, we may observe 
the onset of a  “dynamical size effect”: by this, we mean 
that in systems with many degrees of freedom, the influ- 
ence of any one “special” degree of freedom (such as the 
isomerization coordinate) may become obscured or unim- 
portant. These two possibilities are not mutually exclusive: 
the “piling-up” of vibrational frequencies may be the first 
stage in the onset of a  dynamical size effect. These conjec- 
tures deserve further exploration. 

D. LJ5 clusters 

Next, we discuss the LJ, cluster, which has only one 
kind of minimum but has two different kinds of first-rank 
saddle points. In the first column of Table IV we summa- 
rize the energies of these stationary points and the imagi- 
nary vibrational frequencies of the two saddles. The lower 
saddle connects two permutational isomers of the LJs clus- 
ter by a diamond-square-diamond37 (DSD) pathway, 
while the higher saddle connects two LJ5 isomers by an 
edge-bridging38 (EB) pathway. Our technique for isolating 
saddle-crossing trajectory segments is able to distinguish 
between these two saddles because they connect permuta- 
tionally distinct pairs of minima; a given minimum-energy 
configuration of the LJ, cluster is transformed into two 
distinct labeled minima by the DSD and EB isomeriza- 
tions. 

We  note that both saddles are considerably more 
pinched than those found in the LJ3 and LJ4 clusters. We  
therefore anticipate that the saddles of LJ, will be less 
effective than those of LJ3 or LJ, at decoupling the cluster’s 
vibrational modes and inducing approximate quasiperiodic 
behavior. This is in fact what we observe. 

First, we examine the high-energy EB saddle, which 
with c&d= 18.841’ cm-’ is the flatter of the two saddles in 
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FIG. 9. Probability distributions similar to those given in Fig. 2, except 
for a LJ, cluster crossing its EB saddle at total energy E= -7.5 E. The 
saddle-region distributions are computed from a sample of 630 saddle 
crossings of the edge-bridging saddle, and the well-region distributions are 
computed from a sample of 650 trajectory segments in the potential well. 
Units for the abcissas are as in Fig. 2. 

the LJ5 cluster. In Fig. 9 we give probability distributions 
for K, (K,), (r), and (C) for a LJ5 cluster at E= -7.5 E 
as it crosses this saddle; the means of these distributions 
are summarized in the first column of Table V. We see that 
trajectory segments of LJ, which cross the EB saddle have 
only slightly smaller values of these four quantities than do 
segments in the potential well. This observation is in keep- 
ing with the trend established for three- and four-atom 
clusters that a cluster’s dynamics are least chaotic in those 
areas of the potential surface with the least negative cur- 
vature. 

TABLE V. Comparison of the means of the probability distributions for 
K, (K,) , ( T) , and ( c) for the EB saddle crossings of LJ, (see Fig. 9) and 
p=5 and p=9 M, clusters (see Figs. 11 and 12), all at energies of 
E= -7.56. Units are the same as those for the abcissas in the figures. 
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FIG. 10. Probability distributions similar to those given in Fig. 9, except 
for the DSD saddle of LJ,. The saddle-region distributions are computed 
from a sample of 662 saddle crossings of the DSD saddle, and the well- 
region distributions are computed from a sample of 650 trajectory seg- 
ments in the potential well. Units for the abcissas are as in Fig. 2. 

However, we note that the fractional decrease in K 
near the EB saddle of LJ, is somewhat smaller than that 
near either the LJ3 or LJ, saddle. This suggests that the EB 
saddle of LJ,, because of its greater negative curvature 
along the isomerization coordinate, is less effective than 
either the LJ, or LJ, saddle at collimating the flow of 
saddle-crossing trajectories. 

Quantity 

KLIO 
Ghl 
P 3xm 

K+’ 3xm 

OL),w,m 
W&w 
K&ca 
W~J:,)~I 

(Tjw 3xml 
(T)&o 
(Wkcu 
(T)+3 3xm.l 

Mean for LJs 

34.60 
34.37 
31.59 
34.41 

19.80 
19.73 
16.25 
19.74 

18.57 
18.45 
16.58 
18.50 

0.0331 
0.0330 
0.0306 
0.0332 

Mean for kJs Mean for M, 
p=5 p=9 

25.27 36.83 
25.14 36.64 
25.08 30.17 
25.18 36.53 

14.23 18.03 
13.91 18.01 
12.81 13.31 
14.14 18.14 

18.80 18.06 
18.85 18.04 
16.93 13.48 
18.83 17.96 

0.0266 0.0434 
0.0266 0.0433 
0.0245 0.0370 
0.0266 0.0432 

Next, we examine the DSD saddle of LJ,; this saddle is 
very sharply pinched, with 0,,=35.521’ cm-‘. In Fig. 10 
we show probability distributions for K, (K,), (T), and 
(C) for a LJ5 cluster crossing the DSD saddle at E= - 7.5 
E. The means of these distributions are summarized in the 
first column of Table VI. There appears to be virtually no 
difference between the dynamics of the LJ5 cluster in the 
DSD saddle region and in the well region. Hence we con- 
clude that the DSD saddle of LJ, is completely ineffective 
at collimating phase space trajectories. 

It is interesting to note that the differences between a 
cluster’s dynamics in the saddle region and those in the 
well region seem to diminish as the saddle becomes more 
sharply negatively curved. There are at least two possible 
intepretations which are consistent with this observation. 
( 1) As the negative curvature associated with the isomer- 
ization coordinate increases, it is plausible that the mean 
negative curvature experienced by trajectory segments in 
the saddle region approaches that experienced by well- 
region segments. Because it appears that the magnitude of 
negative curvature experienced by a trajectory segment 
largely determines the degree of local chaos and vibrational 
coupling in the segment, we expect under this scenario that 
for moderately sharp saddles, the dynamics characteristic 
of the well and saddle regions will be quite similar. (2) On 
the other hand, for increasingly sharp saddles we expect 
that MD trajectories which cross the saddle point spend 
less and less time “on the saddle.” Hence as we increase the 
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TABLE VI. Comparison of the means of the probability distributions for 
K, (K,), (T), and (C) for the DSD saddle crossings of LJ, (see Fig. IO) 
and p=5 and p=9 M, clusters (see Figs, 13 and 14), all at energies of 
E= -7.5~ Units are the same as those for the abcissae in the figures. 

Quantity 

K’WXXX) 
GACO 
KQ 3x303 

fGAQ3 

(K&w 
(Ku) &XI 
K&w 
ULK~~I 

(Tjw 
‘1” 

3m 3X9X 

(T)+’ 3Xwx) 

(c)‘wxwx, 
K9&00 
KLW 
(c)+3 3x503 

Mean for LJs 

34.60 
34.48 
34.90 
34.54 

19.80 
19.67 
19.28 
19.80 

18.57 
18.54 
18.31 
18.53 

0.0331 
0.033 1 
0.0327 
0.033 1 

Mean for MS Mean for MS 
p=5 p=9 

25.27 36.83 
25.07 36.55 
26.54 35.39 
25.21 36.53 

14.23 18.03 
13.98 18.02 
14.61 17.68 
14.04 17.89 

18.80 18.06 
18.89 18.00 
18.71 16.45 
18.88 18.06 

0.0266 0.0434 
0.0266 0.0434 
0.0262 0.0409 
0.0266 0.0434 

sharpness of a saddle while keeping the trajectory segment 
length fixed, “saddle-crossing” segments include larger 
fractional contributions from the well region, and become 
less and less representative of the “true” dynamics on the 
saddle. In this scenario, the dynamics observed for saddle- 
region and well-region segments converge as the saddles 
sharpen simply because the “saddle-region” segments lose 
their special saddlelike character and look just about like 
well-region segments. 

The essential difference between these interpretations 
is as follows. Under interpretation ( 1) the cluster can be 
said to have specific dynamical properties associated with 
the saddle region, although the dynamics near the saddle 
may appear similar to those associated with the potential 
well. Under interpretation (2), however, the concept of 
“saddle-region dynamics” may become largely invalid on 
the time scale of the MD trajectory segment. 

From the data presented here, we cannot determine 
which of these interpretations explains the gradual conver- 
gence of well- and saddle-region dynamics in Lennard- 
Jones and Morse clusters as the saddles of these clusters 
become sharper. An additional complication is introduced 
by the possibility that the dynamics observed near a given 
saddle may correspond to interpretation ( 1) at low ener- 
gies and interpretation (2) at high energies. This is because 
at energies where the cluster has just slightly more energy 
than is required to cross the saddle, the trajectory can 
spend a long enough period of time “on the saddle” to 
establish distinct dynamical properties associated with the 
saddle geometry; this is probably true for even moderately 
sharp saddles. At high energies, however, trajectories may 
pass so quickly over a saddle that we cannot observe dis- 
tinct “saddle-region dynamics” on any but the shortest 
time scale; this may even be true for fairly flat saddles. 

It may be that any given saddle has an associated “crit- 

ical energy” or energy range, below which we can identify 
distinct saddle-region dynamics and above which we can- 
not; this energy (or more precisely, the excess energy 
above that required to cross the saddle) should be lower 
for sharper saddles. We expect this critical energy to be 
bounded from above by the energy at which tCcross, the clus- 
ter’s transit time through the negatively curved interval of 
the isomerization reaction coordinate, is comparable to the 
longest vibrational period of the cluster’s stable vibrational 
modes; that is, at the energy where 

t cross =s/v=s/(p*) ~2lT/o+. 

In this equation, s is the length of the negatively curved 
interval of the reaction coordinate and u= (pi) is the mean 
velocity of the cluster along the reaction coordinate in the 
saddle region. (Recall from Sec. III A that p1 is the pro- 
jection of the cluster’s atomic momenta onto mode fi,, 
which is the isomerization coordinate in the saddle re- 
gion.) To fully understand the behavior of a cluster near a 
sharp saddle point, we must examine the cluster’s dynam- 
ics over a range of energies; in Sec. IV we will sketch out 
one method for accomplishing this and will apply it to the 
three- and four-atom clusters studied above. 

We emphasize that for all of the saddles mentioned so 
far except the DSD saddle in LJ,, we have found statisti- 
cally significant differences between the dynamics of 1500- 
step well-region and saddle-region segments; this indicates 
that we are below any “critical energy” at which scenario 
(2) might become important on this time scale for these 
saddles. 

E. M5 clusters 

We have performed calculations similar to those sum- 
marized in Figs. 9 and 10 for two different MS clusters, one 
bound by a pair potential slightly longer in range than the 
Lennard-Jones potential ( p= 5), and one bound by a po- 
tential much shorter in range (p= 9). These two clusters 
have potential surfaces with the same topological structure 
as that of LJs, although as Table IV shows, the energies 
and curvatures of the stationary points depend quite 
strongly on the range of the interatomic pair potential. 

First, we examine the EB saddles of these two M, 
clusters. In Fig. 11 we show the probability distributions 
for K, (K,), (T), and (C) for the p = 5 M5 cluster as it 
crosses this saddle; similar distributions for the p= 9 M5 
cluster are given in Fig. 12. The means of the distributions 
for both Morse clusters are summarized in Table V, along 
with those for the EB saddle of LJ,. The calculations for 
both Morse clusters were performed for a total energy of 
E= -7.5 E. 

Recall from Table IV that the EB saddle of the p=9 
M, cluster is substantially flatter than that of the LJ, clus- 
ter, while the EB saddle of the p=5 MS cluster is more 
sharply pinched than the LJ, saddle. These differences 
manifest themselves in the values of (K,) and K accumu- 
lated near the EB saddles of the two Morse clusters. We see 
from Fig. 11 and Table V that in the p = 5 MS cluster, MD 
trajectory segments which cross the EB saddle experience 
slightly less negative curvature than trajectory segments on 
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FIG. 11. Probability distributions similar to those given in Fig. 9, except 
for a p=5 Mr cluster crossing its EB saddle at total energy E= -7.5 E. 
The saddle-region distributions are computed from a sample of 729 EB 
saddle crossings, and the well-region distributions are computed from a 
sample of 616 trajectory segments in the potential well. Units for the 
abcissas are as in Fig. 2. 

any other portion of the potential surface. However, the 
difference between the mean negative curvature in the well 
and saddle regions is less pronounced for this cluster than 
for the MS cluster. Furthermore, there is no apparent col- 
limation of nearby MD trajectories near this saddle, as K 
has virtually the same average value in the saddle and well 
regions of this cluster. 

In the p=9 MS cluster, however, the EB saddle once 
again is able to channel together neighboring phase space 
trajectories; Fig. 12 shows that K and (K,) decrease sub- 

Local K.EntroPy “lb COupllng 

:;B\ 1;F-i 

tIE?gd 1,w 15 25 45 
Tb-mpGll”E Negawe curvature 

-,~-, 7, , 

yqg~~~ 

- 

01~ iz O' 
0 0 

9 12 15 18 10 15 20 25 

FIG. 12. Probability distributions similar to those given in Fig. 9, except 
for a p=9 MS cluster crossing its EB saddle at total energy E= -7.5 e. 
The saddle-region distributions are computed from a sample of 584 EB 
saddle crossings, and the well-region distributions are computed from a 
sample of 671 trajectory segments in the potential well. Units for the 
abcissas are as in Fig. 2. 
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FIG. 13. Probability distributions similar to those given in Fig. 11, except 
for the DSD saddle of p=5 MS. The saddle-region distributions are 
computed from a sample of 674 DSD saddle crossings, and the well- 
region distributions are computed from a sample of 616 trajectory seg- 
ments in the potential well. Units for the abcissas are as in Fig. 2. 

stantially near the EB saddle of this cluster. Thus these 
five-atom Morse clusters continue to follow the pattern 
established previously, in which flat saddles are more ef- 
fective at collimating the flow of phase space trajectories 
and reducing the local K entropy accumulated by a cluster. 

Next, we examine the behavior of (C) and (T) in 
these two clusters. We find that in both the p= 5 and p=9 
M, clusters, (C) and ( r) decrease somewhat near the EB 
saddle. The decreases in these quantities are larger for the 
p=9 cluster, with its flatter EB saddle; however, for both 
M, clusters the decreases in (C) and (r> are statistically 
significant according to Student’s t test and the 
Kolmogorov-Smirnov test. The fact that (T) decreases 
near the EB saddle of the p=5 M, cluster, while the local 
K entropy K does not, provides further evidence that the 
local K entropy accumulated by a cluster in a region of 
configuration space does not necessarily rise and fall in 
tandem with the cluster’s kinetic energy there. Further- 
more, the decrease in (C) near the EB saddle of the p= 5 
cluster suggests that in this cluster, (C) is no longer a good 
measure of the dynamical processes controlling the evolu- 
tion of chaos near saddle points. This may be another man- 
ifestation of a “dynamical size effect” in the relatively large 
five-atom clusters. 

Next, we turn to the DSD saddles of the two Morse 
clusters. Figure 13 shows the probability distributions for 
K, (K,), (T), and (C) for the p= 5 MS cluster as it 
crosses this saddle; similar distributions for the p=9 M, 
cluster are given in Fig. 14. The means of the distributions 
for both Morse clusters are summarized in Table VI, along 
with those for the DSD saddle of LJ,. The calculations for 
both Morse clusters were again done at a total energy of 
E= -7.5 E. 

These results show that the DSD saddles of the two M, 
clusters have opposite effects on the local chaotic dynamics 
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FIG. 14. Probability distributions similar to those given in Fig. 12, except 
for the DSD saddle of p=9 M,. The saddle-region distributions are 
computed from a sample of 727 DSD saddle crossings, and the well- 
region distributions are computed from a sample of 671 trajectory seg- 
ments in the potential well. Units for the abcissas are as in Fig. 2. 

of the clusters. The DSD saddle of the p= 9 cluster, al- 
though it is much sharper than the EB saddle of this clus- 
ter, still acts to collimate the flow of MD trajectories 
slightly and thereby reduces K in the saddle region. (How- 
ever, the collimating effect of this saddle is weaker than 
that of the same cluster’s EB saddle, as we might expect 
from the fact that the DSD saddle is substantially more 
pinched.) By comparison, in the p=5 cluster, the mean 
negative curvature (K,) and the local K entropy K actu- 
ally increase slightly near the DSD saddle point. In fact, 
the p= 5 cluster is locally more chaotic near the DSD 
saddle than in any other region of configuration space. It 
appears that this saddle is so sharply pinched (with ti,,d 
= 39.441’ cm-‘) that the negative curvature of the potential 
surface near the saddle acts to accelerate the divergence of 
nearby phase space trajectories and thereby increases the 
cluster’s local K entropy. 

There is one peculiar point concerning the behavior of 
the two M, clusters. The DSD saddle of the p=9 cluster, 
which has oti=30.31i cm-‘, retains some ability to col- 
limate nearby trajectories, but the EB saddle of the p= 5 
cluster, which with asad= 20.991’ cm-’ is substantially flat- 
ter, does not appear to collimate MD trajectories to any 
significant extent. Hence if we simply ranked the saddles of 
the two MS clusters in order of increasing negative curva- 
ture and in order of increasing collimating ability, these 
orderings would disagree with one another. 

We have calculated the full DSD and EB isomerization 
reaction pathways for both M, clusters in order to gain a 
better understanding of the geometries of the various sad- 
dle regions in these clusters and resolve this apparent dis- 
crepancy. (Following Fukui, Kato, and Fujimoto,39 we de- 
fine the reaction path as the steepest descent path in mass- 
weighted Cartesian coordinates from a saddle point to a 
minimum. We use the CLQA algorithm of Page, Double- 

66 patlway 

2w. 

150. - 

100. 

j .__ ;,,,j .._ ‘._.. . ..__.._. ../ ,,:: 

2 4 6 

;:-.-......-; -..- . . . . . . . . . . .._.. ~ __.. 

3 6 9 12 
Arc LwQlh &C IRnpth 

FIG. 15. Normal mode vibrational frequencies (in cm-‘) along the 
steepest-descent reaction paths for the DSD and EB reaction paths of a 
p=5 M, cluster. The x axis measures progress away from the saddle 
point in terms of a reaction path’s arc length s; units are amuIR A. Only 
positive s values are depicted here; the reaction paths are symmetric about 
s=O. We only show that portion of the reaction path which has one 
imaginary frequency; this frequency, which is associated with the isomer- 
ization coordinate, is marked with a dashed line. The full reaction paths 
extend to s= f 10.59 amu “‘A for the DSD saddle and s= *17.12 
amul” 8, for the EB saddle. 

day, and McIve? to compute the reaction paths.) Figure 
15 shows how the vibrational frequencies of the p = 5 MS 
cluster vary along both the DSD and EB reaction paths of 
this cluster; Fig. 16 gives similar data for the p=9 cluster. 
The reaction paths in these clusters lie at the bottom of a 
nine-dimensional valley leading from the saddle point to 
the minimum; these figures essentially depict the local cur- 
vatures of the potential surface as a function of arc length 
s along the “reaction valleys” of the two clusters. We show 
here only those portions of the reaction paths which are 
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FIG. 16. Normal mode vibrational frequencies (in cm-l) along the 
steepest-descent reaction paths for the DSD and EB reaction paths of a 
p=9 M, cluster. The x axis measures progress away from the saddle 
point in terms of a reaction path’s arc length s, units are amu”’ A. Only 
positives values are depicted here; the reaction paths are symmetric about 
s=O. We only show that portion of the reaction path which has one 
imaginary frequency; this frequency, which is associated with the isomer- 
ization coordinate, is marked with a dashed line. The full reaction paths 
extend to s= * 10.75 amu”* 8, for the DSD saddle and s= Al7.30 
amu”’ 8, for the EB saddle. 
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TABLE VII. Vibrational frequencies (in cm-’ ) of the normal modes of p= 5 and p=9 Ms clusters at their respective minima and saddle points. Doubly 
degenerate modes are listed only once. 

Minimum EB saddle DSD saddle 

Species p=5 p=9 Species p=5 p=9 Species p=5 p=9 

E’ 76.24 137.28 4 39.441’ 30.31i 4 20.991’ 8.643 
4 113.49 208.79 4 90.57 173.63 Al 73.48 145.80 
E” 136.04 239.01 E 116.03 202.57 A2 103.5 1 176.77 
E 140.65 252.84 Al 122.10 209.38 82 113.65 192.21 
A; 182.55 322.21 82 155.79 255.59 Al 126.62 236.36 
Ai 202.04 363.49 E 170.33 293.27 4 142.79 249.70 

Al 190.81 336.51 B2 156.23 269.24 
Al 172.69 304.92 
Al 198.82 353.24 

close enough to a saddle point to have negative curvature 
along the isomerization coordinate. In Table VII we give 
the vibrational frequencies for the two MS clusters at their 
respective minima and saddle points; these stationary 
points are the end points of the corresponding reaction 
paths. 

We see that in both clusters, the normal mode frequen- 
cies vary fairly slowly with arc length near both the DSD 
and EB saddle points; hence we believe that any “rippling” 
of the walls of the reaction path valley is not very impor- 
tant in these systems. The primary difference between the 
reaction paths of these two clusters is simply the magni- 
tude of the vibrational frequencies, and the magnitude of 
the single imaginary frequency in particular. 

Figure 16 shows that in the p=9 MS cluster, the mag- 
nitude of the cluster’s imaginary vibrational frequency in- 
creases substantially as the cluster moves down the reac- 
tion valley away from the saddle point. (Once the cluster 
begins to approach the minimum, of course, the imaginary 
frequency decreases sharply in magnitude.) This increase 
in negative curvature occurs as the reaction valley plunges 
sharply downward on the potential surface. 

In the p=5 cluster, however, the single imaginary fre- 
quency changes less rapidly along the isomerization path- 
way. In fact, in the DSD reaction valley, the imaginary 
frequency of this cluster remains relatively constant until 
about s=7 amu “* A after which it gradually decreases in , 
magnitude. In the EB reaction valley, the imaginary fre- 
quency does increase in magnitude somewhat as the cluster 
moves away from the saddle point, but this increase is 
smaller than that seen in either reaction valley of the p=9 
cluster. This suggests that it is important to examine the 
flatness of a saddle not only in absolute terms, but also in 
comparison to the negative curvature of the potential sur- 
face away from the saddle point. Hence although the DSD 
saddle of the p=9 cluster is sharply pinched in absolute 
terms, with awd=30.31i cm-‘, the saddle region of this 
cluster is still significantly flatter than other portions of the 
potential surface, and so the cluster becomes temporarily 
less chaotic near the saddle point. 

Finally, we note that the real frequencies of the p=9 
cluster are much larger than those of the p=5 cluster, 
indicating that the reaction valleys of the p=9 cluster are 

significantly narrower. This may enhance the decoupling 
effect of the p= 9 saddles, because, as Eq. ( 1) shows, the 
coupling between two modes decreases sharply as the 
modes diverge in frequency. It is unclear whether the mag- 
nitudes of a cluster’s real frequencies affect the collimating 
ability of a saddle. Intuitively it seems that, all other things 
being equal, a narrow reaction valley would collimate 
phase space trajectories more strongly than a wide valley. 
However, Wales and Berry27 have shown that in regions of 
configuration space where there is at least one imaginary 
vibrational frequency, the magnitude of this frequency 
dominates the behavior of the local K entropy. 

F. LJ, clusters 

Next, we discuss the LJ6 cluster; this is the smallest LJ 
cluster with two kinds of potential energy minima. The 
global minimum corresponds to an octahedral arrange- 
ment of the atoms, with energy E= - 12.712 E. There is a 
higher minimum in which five atoms form a trigonal bi- 
pyramid, which is capped on one face by the sixth atom; 
this minimum has energy E= - 12.303 E. The LJ, potential 
surface also contains two distinct kinds of first-rank sad- 
dles. One saddle, at energy E= - 12.079 E, joins an octa- 
hedral minimum to a capped trigonal bipyramid (CTBP) 
minimum; a higher saddle at E= - 11.630 E joins two per- 
mutationally distinct CTBP structures. A more complete 
discussion of the connectivity of these saddles and minima 
has been presented elsewhere.41 Because of the complexity 
of this surface, we have found it necessary to reduce our 
quench interval to 250 time steps to assemble a large en- 
semble of trajectory segments which cross exactly one sad- 
dle; hence the quantities we considered for the smaller 
clusters, such as K&, and GXsoo, become K&25o and 
Ko 3X 25o in the context of LJ6. 

We consider first the lower saddle, which connects two 
nondegenerate minima. In Fig. 17 we show several proba- 
bility distributions for the quantities K, (K,), (T), and 
(C), all calculated at E= - 10.4 E. Note that each portion 
of this figure contains$ue distributions. The topmost dis- 
tribution corresponds to 750~step trajectory segments re- 
siding in the high-energy CTBP minimum, and the bottom 
distribution corresponds to segments residing in the octa- 
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FIG. 17. Probability distributions similar to those given in Fig. 2, except 
for a LJ, cluster at total energy E= - 10.4 E. The saddle-region distribu- 
tions are computed from a sample of 739 crossings of the lower LJ, 
saddle, and the distributions for the upper (CTBP) and lower (octahe- 
dron) minima are computed from samples of 593 and 633 trajectory 
segments, respectively. Units for the abcissas are as in Fig. 2. Note that 
the trajectory segments summarized here are each 750 steps long. 

hedral minimum. The three middle distributions give, from 
top to bottom, results for 750~step segments immediately 
preceding a saddle crossing, those which include a saddle 
crossing, and those immediately following a saddle cross- 
ing. Only saddle crossings from the upper minimum to the 
lower minimum are shown here, so that each set of five 
distributions can be read continuously from top to bottom 
as representing trajectories moving from the upper well to 
the lower well. Saddle crossings in the reverse direction 
give rise to sets of distributions in which the distributions 
preceding and following the saddle are interchanged, but 
which contain statistically identical results; this shows that 
the direction in which the saddle is traversed is irrelevant, 
as we found for smaller clusters. Calculations at E= - 11 .O 
E produce similar results. 

We  see that the high-energy minimum of LJ6 is sub- 
stantially colder and less chaotic than the low-energy min- 
imum; the high-energy well also has lower values of (C) 
and (K,) on average. The saddle region has values of K, 
(K,), (T), and (c) which are intermediate between those 
of the two minima, whereas the segments preceding or 
following a saddle crossing are statistically indistinguish- 
able from those segments in the corresponding well. 

It seems reasonable that the local K entropy and mag- 
nitude of negative curvature should be higher in the low- 
energy well than in the high-energy well. Our calculations 
are performed at constant total energy; hence the potential 
energy difference between a well’s minimum and the high- 
est energetically accessible regions in that well is larger for 
the lower well. If we make the plausible assumption that 
the degree of mode coupling and negative curvature accu- 
mulated in a well increase as we move up the sides of the 
well, it follows that we expect K and (K,) will be highest 
when the cluster is in the low-energy well. It would be 

interesting to compute K and (K,) as functions of energy 
for trajectory segments in a given well, thereby probing the 
incremental changes in these two quantities in the energy 
range from E to E+ AE; this could give us some useful 
information about a well’s shape at high energies. 

Figure 17 seems to indicate that the dynamics of LJ6 in 
the saddle region are intermediate between the cluster’s 
dynamics in the two minima connected by the saddle. 
However, this may be an unjustified conclusion. It could be 
that this saddle is so sharply curved (o,=49.18i cm-‘) 
that trajectories crossing the saddle do not spend a signif- 
icant length of time “on the saddle,” as we discussed above 
in the LJs subsection; instead, the saddle point may simply 
divide each saddle-crossing segment into two parts, one in 
each potential minimum, with the dynamics of each sub- 
segment being characteristic of the underlying minimum. 
Under this interpretation, which is essentially the same as 
interpretation (2) in Sec. III D, the dynamics observed for 
any given saddle-crossing segment would be intermediate 
between the dynamics in the two minima simply because 
each saddle-crossing segment spans both minima. 

The data we present here cannot determine unambig- 
uously which of these interpretations is correct. However, 
we note that the mean vibrational temperature of the 
saddle-crossing segments is intermediate between the mean 
temperatures in the two wells. We  intuitively expect that 
the temperature in the saddle region should be lower than 
that in either well, because the saddle region has the high- 
est potential energy. Hence it seems unlikely to us that at 
E= - 10.4 E the 750-step trajectory segments crossing the 
CTBP -+octahedron saddle of LJ, spend a large enough 
fraction of their time “on the saddle” to exhibit dynamical 
properties characteristic of the saddle region. Even if we 
consider the individual 250-step segments from which the 
larger 750-step segments are assembled, we find that the 
temperature in the saddle region is intermediate between 
the temperatures observed in the two wells. This suggests 
that for this saddle, any true saddle-region dynamics take 
place on a time scale shorter than 250 time steps, or 2.5 ps 
of real time. 

Next, we discuss very briefly the high-energy saddle 
point, which connects two degenerate CTBP minima and is 
somewhat flatter (@,,d = 34.961 cm- ‘) than the low-energy 
saddle point. It appears that this reduction in curvature is 
sufficient to allow the cluster to remain on the saddle long 
enough to exhibit dynamical properties representative of 
the saddle region, as we observe significant differences at 
E= - 10.4 E between the 750-step well-region and saddle- 
region trajectory segments for this saddle. Although we do 
not show probability distributions for these trajectory seg- 
ments here, we find that the high-energy saddle of LJ6 is 
like the DSD saddle of p= 5 Ms in that the local K entropy 
of LJ6 is actually higher in the saddle region than anywhere 
else on the E= - 10.4 E hypersurface. 

G. LJ, clusters 

The largest cluster we consider in this paper is LJ,; 
this cluster has four energetically distinct minima, which 
we will call “1” through “4” in order of increasing energy, 
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TABLE VIII. Comparison of the means of the probability distributions 
for K, (K,), ( T), and (C) for the 4 -t 2 and 3 - 2 isomerization processes 
of LJ, at E=--13.5~ (see text for details). The number of trajectory 
segments in each sample is given by Nu, , N& , and NLw. 

60 
I- 

Quantity 

GY250 

G22M 
P 3x254 

#ii254 

PW 3X250 

W,%~I 
CL&?250 

WaJ!x2sa 

Ko)::250 
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(T)i%o 
(%;2sa 

mxzw 
(T)+’ 3X250 

( 7') :%so 

my250 

l:~z~ 3x250 

CO::*50 
cm;250 

Nuw 
N sad 

NLW 

4-2 3-2 

49.97 51.18 
49.94 50.98 
51.46 57.49 
61.31 61.38 
61.38 61.38 

20.93 22.35 
21.04 22.61 
27.48 28.12 
31.36 31.21 
31.55 31.55 

14.73 15.13 
14.72 15.13 
15.92 16.17 
17.20 17.22 
17.14 17.14 

0.0336 0.0345 
0.0336 0.0345 
0.0354 0.0357 
0.0383 0.0383 
0.0382 0.0382 

636 519 
655 516 
607 607 

15 ' 
-10 -5 0 5 10 

n 

. . FIG. 18. Vanation of exr,-,, with n for LJ4 at E= -4.2 E. The dashed 
line gives the mean value of K&5M) at the same energy. Error bars extend 
one standard deviation in each direction. 

cates that any genuine saddle-region dynamics for these 
saddles occur on a time scale shorter than 2.5 ps.) 

IV. CROSS-ENERGY AND CROSS-CLUSTER 
COMPARISONS 

and at least ten energetically distinct low-lying first-rank 
saddle points. (For a complete discussion of the LJ, po- 
tential surface, including the energies of these stationary 
points, we refer the reader to Refs. 2 1 and 32. ) This cluster 
is of particular interest because it is the smallest Lennard- 
Jones cluster which exhibits distinct solidlike and liquid- 
like behavior over a range of temperatures.*’ In an earlier 
study of the evolution of chaos in LJ,, we found that the K 
entropy of this cluster rose smoothly and monotonically 
with energy, showing no kinks in the “phase coexistence” 
range.23 

One obstacle to using the histograms presented above 
to make quantitative comparisons of the regularizing abil- 
ity of different saddles is the fact that the saddle-crossing 
segments generated above may actually incorporate dy- 
namics representative of both the saddle and well regions 
of the potential surface. For example, Fig. 3 showed that at 
E= - 1.85 E, a typical LJ, isomerization is complete within 
about 1000 time steps, or about two-thirds the duration of 
our 15OO-step trajectory segments. Hence to fully under- 
stand the apparent convergence of well-region and saddle- 
region dynamics as a saddle becomes more sharply curved, 
we must first isolate the saddle-region dynamics. We al- 
luded to this point above in Sec. III D, where we discussed 
two alternative scenarios which might explain the observed 
convergence of well-region and saddle-region dynamics. 

We have studied here only two of the ten saddles of 
LJ,: those involved in the 3 -+ 2 and 4--+ 2 isomerization 
processes. We tlnd that these two saddles, which have re- 
spective negative curvatures of w,=48.88i cm- ’ and 
49.063’ cm-‘, have properties largely similar to those of the 
CTBP -+ octahedron saddle of LJ, discussed above. In par- 
ticular, we find that for both of these saddles, the saddle 
region has dynamical properties intermediate between 
those of the upper well (where K and (K,) are the small- 
est) and the lower well (where K and (K,) are the larg- 
est). We do not show the complete set of probability dis- 
tributions for either of these LJ, saddles, as they appear 
qualitatively similar to the LJ6 distributions shown in Fig. 
17. Instead, we give the means of the distributions in Table 
VIII. (Note that we use a quench interval of 250 time steps 
for these computations, as we did for LJ,. If we examine 
the individual 250-step trajectory segments obtained for 
LJ7, we uncover the same pattern of behavior; this indi- 

The simplest way to isolate the saddle-region dynamics 
is to reduce the duration of our MD trajectory segments. 
We do this by reducing the MD time step we use by a 
factor of 10, to At= lo-l5 s. (We could just as easily re- 
duce the quench interval L to generate shorter trajectory 
segments; however, the width of the histograms presented 
above increases rapidly as L is reduced, so that if L gets 
too small we might obscure subtle differences between sam- 
ple sets.) With the reduced time step, we again search for 
saddle crossings and examine the behavior of K;, 5oo as the 
index n moves away from n =O. This gives an indication of 
how quickly the special nature of the saddle region dies 
away as a trajectory enters the deep well. For example, Fig. 
18 shows how K;,500 varies with n for the LJ4 cluster at 
E= -4.2 E. The dashed line gives the mean value of K$500 
at this energy. We see that the influence of the saddle 
extends roughly over the range - 8 <n < 8, which represents 
about 9 ps. 
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FIG. 19. AK for LJ, (open squares, dashed line), p=3 (open circles, 
solid line) and p=6 (solid circles, solid line) MJ, and LJ, (solid trian- 
gles, dashed line) clusters, plotted as a function of isomerization rate. 

Provided that Kg,,, 
KE5M) for 

is significantly different from 
-4<n<4, we can use the difference 

AK= iCwXm- Ko 3Xsoo as a quantitative estimate of a sad- 
die’s ability to temporarily induce more regular dynamics 
in a cluster. This proviso ensures that the segment centered 
on the saddle contains only saddle-region dynamics. 

We have calculated AK in this fashion over a range of 
energies for the three- and four-atom clusters studied 
above. For the LJ3 and Ms clusters, we have computed AK 
at seven equally spaced energies between - 1.8 E and - 1.2 
e; for L.J, we have used seven equally spaced energies be- 
tween -4.4 E and -3.8 E. Our results for all four clusters 
are given in Fig. 19, where we plot AK against the rate of 
isomerization across each saddle in order to correct at least 
partially for differences in the potential energies of the sad- 
dles. The isomerization rates given here are computed from 
the slope of the hazard plot4* of consecutive well residence 
times in long MD trajectories. 

This figure illustrates that the saddle of the p= 3 M, 
cluster, which is the most sharply curved of the four sad- 
dies considered here, is clearly less effective at inducing 
regular dynamics than are the other three saddles. This 
finding coincides with the results presented in Sec. III, 
where we observed substantial differences between well- 
region and saddle-region dynamics for the LJ,, LJ,, and 
p = 6 MS clusters, but found only small diferences between 
the well and saddle dynamics for the M3 cluster with p= 3. 
We also note that Fig. 19 confirms that the results pre- 
sented in Sec. III are in fact representative of a wide range 
of energies for these clusters, and are not flukes or artifacts 
of the particular energies chosen earlier. 

It appears from Fig. 19 that at low energies, the LJ,, 
saddle is the most effective of the four saddles considered 
here in temporarily reducing a cluster’s local K entropy. 
However, the calculations summarized here also reveal 
that the influence of the saddle region dies off more quickly 
in LJ, than in either LJ3 or p=6 Ms: as we saw from Fig. 
18, the influence of the LJ4 saddle extends outward to 
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FIG. 20. Variation of K;,,M with n for p=3 M, at E=--1.6 E. The 
dashed line gives the mean value of KY&, at the same energy. Error bars 
extend one standard deviation in each direction. 

roughly n= 8, while for the LJ, and p=6 M3 clusters the 
region of reduced local K entropy typically extends to 
n= 12 or 13. The competition between these two effects is 
responsible for the shapes of the histograms presented 
above. Because the fixed-length saddle-crossing segments 
analyzed in Sec. III contain a larger fraction of well-region 
dynamics for LJ4 than for LJs or p=6 Ms, the differences 
between the means of the well and saddle K distributions of 
these three clusters are comparable in magnitude despite 
the LJ, saddle’s greater intrinsic ability to induce regular 
dynamics. If this kind of analysis were extended to the 
five-atom clusters studied above, it could shed some light 
on the question raised in Sec. III D concerning the mech- 
anism which drives the observed convergence of well- 
region and saddle-region dynamics in systems with sharp 
saddles. The primary obstacle to this course of action is 
finding a time step At which is suitable for all of the saddles 
we would like to examine. 

Finally, Fig. 20 illustrates an unusual feature of the 
p = 3 M3 saddle which was uncovered during these calcu- 
lations. This figure shows that the portion of the potential 
surface which is most effective at reducing the local K 
entropy of this cluster is not the region closest to the saddle 
point, as we might naively expect, but is in fact somewhat 
removed from the saddle. Although we only give data for 
one energy here, we obtain similar results at each of the 
seven energies we have studied. We do not yet understand 
the reason for this behavior. 

V. DISCUSSION AND CONCLUSIONS 

It is helpful to begin this section by reviewing the main 
results of Sec. III and identifying, where possible, common 
patterns of behavior in the systems we have studied. The 
clearest way to reveal these patterns is to examine the sad- 
dles in order of increasing curvature (or decreasing flat- 
ness), instead of grouping them by cluster size as before. 

For the flattest saddles we have studied, we find that 
the local K entropy of a cluster drops substantially near the 
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saddle point; examples of this type of behavior include the 
LJ3, LJ,, and p=6 Ms clusters. As a saddle becomes 
sharper, the difference observed between the well-region 
and saddle-region local K entropy diminishes somewhat; 
this may reflect either the convergence of the underlying 
dynamics in the two regions or the possibility that fixed- 
length trajectory segments include a smaller fractional con- 
tribution from the saddle region when the saddle is sharply 
curved. This kind of behavior is seen in the LJs, p= 3 Ms, 
and both M, clusters. 

regard. This quasiperiodicity manifests itself in fairly well 
conserved actions associated with one or more stable vi- 
brational modes in the saddle region. Near the sharper 
saddles in the five-atom clusters we have studied, we find 
no evidence for approximate quasiperiodicity, and the sad- 
dle region generally decouples vibrational modes only very 
weakly. 

For even sharper saddles, we find instances where the 
saddle-region local K entropy is somewhat higher than that 
observed in the potential minimum, even though the mean 
temperature and vibrational coupling are lower near the 
saddle than in the well. The DSD saddle of p = 5 MS and 
the high-energy saddle of LJ, exhibit this type of behavior. 

Finally, for the sharpest saddles we have studied, the 
low-energy saddle in LJ, and the 3 -+ 2 and 4 -+ 2 saddles in 
LJ,, we find that the saddle-region dynamics are interme- 
diate between the dynamics observed in the two wells on 
either side of the saddle. This suggests that for these very 
sharp saddles, the time spent “on the saddle” is such a 
small fraction of our fixed-length trajectory segments that 
these segments actually represent an average of the dynam- 
ics characteristic of the two potential minima and not be- 
havior representative of the saddle region. Further evi- 
dence for this view is provided by the fact that the mean 
temperature observed near these saddles is intermediate 
between the temperatures observed in the two wells, even 
though the saddle point is the point with greatest potential 
energy on the reaction path linking the two wells. 

This leads us to the question of the “dynamical size 
effect” mentioned earlier. We found that (C) and K fol- 
lowed the same trends in most of the clusters we studied 
here; in the DSD saddle of p = 5 MS, however, we saw that 
(C) decreased slightly near the saddle point, while K in- 
creased slightly there. This observation may be the signal 
of a transition between behavior representative of systems 
with only a few degrees of freedom (DOF) and that rep- 
resentative of many-DOF systems. If such a transition does 
emerge as a cluster increases in size, we might find that in 
large clusters (as compared with small clusters such as 
LJ3) the geometric peculiarities of any given saddle are less 
important in determining the evolution of the K entropy 
with energy, simply because the properties of single vibra- 
tional modes such as the isomerization coordinate become 
less important in larger systems. 

The trends we observe in the local K entropy correlate 
very well with the degree of negative curvature (K,) which 
a cluster experiences in a given region of the potential sur- 
face. In addition, the asymptotic (global) K entropy curves 
of three- to six-atom Lennard-Jones clusters can be ex- 
plained nicely in terms of these observed trends in the local 
K entropy.43 Although we have not performed an exhaus- 
tive study of all of the saddles in LJ,, the present work also 
sheds light on our earlier observation that the global K 
entropy of LJ, rises monotonically with energy, with no 
apparent kinks or plateaus associated with motion over 
saddles.23 Most of the low-lying saddles in LJ, are rather 
sharp, with 27 <o&i<50 cm-‘. If these saddles behave 
similarly to the ones studied here, it is not too surprising 
that the global K-entropy curve lacks features associated 
with saddle crossings; the amount of time spent on any of 
the saddles during a long MD trajectory is likely to be only 
a small fraction of the trajectory’s total length. There are 
two saddles in LJ, which have w&~2Oi cm-‘, a value 
which is comparable to the values of e&d in the five-atom 
clusters we have studied. However, these clusters are at 
such high energies (E= - 14.597 E and - 14.568 E) that 
we do not expect them to exert much influence on the 
cluster’s dynamics at energies of interest. 

The distinction between K and (C) also suggests that 
there may be two contributions that a saddle region may 
make towards lowering the local K entropy of a cluster. A 
flat saddle naturally contributes less to the divergence of 
neighboring trajectories because of the small negative cur- 
vature of the potential surface there; this effect is quantified 
by (K,). Those saddles near which (C) also decreases 
substantially may lower K further by inducing approxi- 
mately quasiperiodic motion in one or more vibrational 
modes of the cluster. It would be interesting to probe the 
relative importance of these two mechanisms; to do so 
would require a precise criterion for determining the de- 
gree of quasiperiodic behavior near a saddle. Our approx- 
imate mode actions 1j may be a first step in this direction; 
another possibility would be to compare the power spectra 
of saddle-region and well-region trajectory segments. 

We conclude by pointing out the chemical relevance of 
this work. Dumont and Jain” have recently shown that the 
near-separability of the vibrational Hamiltonian of LJ, 
near the saddle point, and the consequent decrease in the 
local K entropy there, are responsible for nonstatistical 
behavior in the isomerization kinetics of this cluster. The 
LJ4 and M3 clusters we have studied here may exhibit 
broadly similar behavior; presumably the p = 3 M3 cluster, 
which among our three-atom clusters has the least separa- 
ble Hamiltonian in the saddle region, should also show the 
least degree of nonstatistical behavior. 

We also find that the flat saddles of LJ3 and LJ4 are 
able to induce temporary and approximate quasiperiodic 
behavior in a cluster by decoupling its vibrational modes; 
the flatter LJ, saddle is somewhat more effective in this 

One drawback to this line of inquiry is that it may not 
be feasible to study experimentally the isomerization kinet- 
ics of LJ3-like clusters such as Ar3, because simple infrared 
spectroscopic techniques are of limited utility in studying 
rare gas clusters. It may also be difficult to determine when 
Ar3 has crossed over a saddle, as the two minima of this 
cluster should have identical properties. We are presently 
extending the current work to heterogeneous van der 
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Waals clusters such as HgArz which may be more amena- 
ble to experimental analysis. 

In addition, recent work of Morais and Varandas45 
suggests that the Na3 cluster, like the weakly bound LJ, 
and M, clusters we have studied, becomes temporarily 
more regular as it passes over saddle points. The model 
Na, cluster which they studied has two nondegenerate 
minima and two distinct kinds of saddle points. They 
found that as the cluster acquires enough energy to pass 
over first one saddle point and then the other, the largest 
(global) Liapunov exponent of the cluster exhibits two 
sharp drops. The Na3 cluster is an ideal candidate for ex- 
perimental study, as traditional spectroscopic techniques 
can easily distinguish between the two distinct minima of 
this cluster. 
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